Estimates of Bivalent mRNA Vaccine Durability in Preventing COVID-19–Associated Hospitalization and Critical Illness Among Adults with and Without Immunocompromising Conditions

VISION Network, September 2022-April 2023

Ruth Link-Gelles, PhD; Zachary A. Weber, PhD; Sarah E. Reese, PhD; Amanda B. Payne, PhD; Manjusha Gaglani, MBBS; Katherine Adams, MPH; Anupam B. Kharbanda, MD; Karthik Natarajan, PhD; Malini B. DeSilva, MD; Kristin Dascomb, MD, PhD; Stephanie A. Irving, MHS; Nicola P. Klein, MD, PhD; Shaun J. Grannis, MD; Toan C. Ong, PhD; Peter J. Embi, MD; Margaret M. Dunne, MSc; Monica Dickerson; Charlene McEvoy, MD; Julie Arndorfer, MPH; Allison L. Naleway, PhD; Kristin Goddard, MPH; Brian E. Dixon, PhD; Eric P. Griggs, MPH; John Hansen, MPH; Nimish Valvi, DrPH; Morgan Najdowski, MPH; Julius Timbol, MS; Colin Rogerson, MD; Bruce Fireman; William F. Fadel, PhD; Palak Patel, MBBS; Caitlin S. Ray, MPH; Ryan Wiegand, PhD; Sarah Ball, ScD; Mark W. Tenforde, MD, PhD

Disclosures

Morbidity and Mortality Weekly Report. 2023;72(21):579-588. 

In This Article

Abstract and Introduction

Introduction

On September 1, 2022, CDC's Advisory Committee on Immunization Practices (ACIP) recommended a single bivalent mRNA COVID-19 booster dose for persons aged ≥12 years who had completed at least a monovalent primary series. Early vaccine effectiveness (VE) estimates among adults aged ≥18 years showed receipt of a bivalent booster dose provided additional protection against COVID-19–associated emergency department and urgent care visits and hospitalizations compared with that in persons who had received only monovalent vaccine doses;[1] however, insufficient time had elapsed since bivalent vaccine authorization to assess the durability of this protection. The VISION Network* assessed VE against COVID-19–associated hospitalizations by time since bivalent vaccine receipt during September 13, 2022–April 21, 2023, among adults aged ≥18 years with and without immunocompromising conditions. During the first 7–59 days after vaccination, compared with no vaccination, VE for receipt of a bivalent vaccine dose among adults aged ≥18 years was 62% (95% CI = 57%–67%) among adults without immunocompromising conditions and 28% (95% CI = 10%–42%) among adults with immunocompromising conditions. Among adults without immunocompromising conditions, VE declined to 24% (95% CI = 12%–33%) among those aged ≥18 years by 120–179 days after vaccination. VE was generally lower for adults with immunocompromising conditions. A bivalent booster dose provided the highest protection, and protection was sustained through at least 179 days against critical outcomes, including intensive care unit (ICU) admission or in-hospital death. These data support updated recommendations allowing additional optional bivalent COVID-19 vaccine doses for certain high-risk populations. All eligible persons should stay up to date with recommended COVID-19 vaccines.

The VISION Network evaluated VE of bivalent vaccines against COVID-19–associated hospitalization by length of time since receipt of the most recent dose during September 13, 2022–April 21, 2023, across five sites in seven states. VE methods used by the VISION Network have been previously described.[2] For this analysis, adults aged ≥18 years with and without immunocompromising conditions who were hospitalized with COVID-19–like illness were included if the patient received molecular testing (e.g., real-time reverse transcription–polymerase chain reaction) for SARS-CoV-2 during the 14 days preceding or up to 72 hours after hospital admission. Patients were categorized as immunocompromised or not based on International Classification of Diseases, Tenth Revision (ICD-10) discharge codes.§ Patients were classified on the index date as unvaccinated (no COVID-19 vaccine doses received), vaccinated with monovalent doses only, or vaccinated with one mRNA bivalent booster dose (regardless of number of previous monovalent doses received). Patients who received only monovalent doses were included if they received any combination of 1–4 doses (or 1–5 doses if immunocompromised) monovalent mRNA (Moderna or Pfizer-BioNTech), Janssen (Johnson & Johnson), or Novavax vaccine doses; recipients of a single monovalent mRNA dose or a single Novavax dose were excluded. In addition, patients were excluded if any vaccine dose was received <7 days before the index date, if a bivalent dose was received ≥180 days before the index date, or if >1 bivalent dose was received.** Patients aged <50 years without documented immunocompromising conditions were excluded if they had received >3 monovalent doses. Patients were considered to have critical illness if they were admitted to an ICU, died, or both.††

Absolute VE was estimated using a test-negative case-control design comparing the odds of vaccination (either bivalent booster or monovalent doses only versus being unvaccinated) among case- and control patients. Relative VE was calculated by comparing those who received a bivalent booster with those who received monovalent doses only. A combined model was generated and included patients who had only received monovalent vaccination ≥7 days before their index date, or a bivalent mRNA booster dose at 7–59, 60–119, or 120–179 days before their index date, compared with an unvaccinated reference group. Odds ratios and 95% CIs were estimated using multivariable logistic regression controlling for age, race and ethnicity, sex, calendar day (days since January 1, 2021), and geographic region. Age and calendar day were modeled as natural cubic splines. VE was modeled separately for persons with and without immunocompromising conditions, by age group (18–64 and ≥65 years), and for each outcome (hospitalization and critical illness).§§ Analyses were conducted using R (version 4.2.2; The R Foundation). This study was conducted consistent with applicable federal law and CDC policy and was reviewed and approved by Institutional Review Boards at participating sites or under a reliance agreement with the Institutional Review Board of Westat, Inc.¶¶

Among 66,141 hospitalized patients without immunocompromising conditions who met inclusion criteria, 6,907 (10.4%) were case-patients and 59,234 (89.6%) were control patients (Table 1). Median age of case- and control patients was 76 years and 71 years, respectively. Among case- and control patients, 25.9% and 23.2% were unvaccinated, respectively; a bivalent vaccine dose had been received by 16.3% of case-patients and 20.6% of control patients. VE against COVID-19–associated hospitalization was similar across age groups, but waned over time, from 62% during the first 7–59 days after the bivalent dose to 24% by 120–179 days among adults aged ≥18 years (Table 2). Among those who received monovalent doses only, VE was 21% a median 376 days after the last dose. VE against critical illness was 69% during the 7–59 days after receipt of a bivalent dose and was more sustained (50% at 120–179 days after bivalent vaccination) than VE against hospitalization.

Among 18,934 hospitalized patients with immunocompromising conditions who met inclusion criteria, 1,834 (9.7%) were case-patients and 17,100 (90.3%) were control patients (Table 3); these persons represented 22.3% of the overall hospitalized population who met inclusion criteria. Median age of case- and control patients was 73 years and 70 years, respectively. Within this group, 17.1% of case-patients and 16.3% of control patients were unvaccinated; 21.0% of case-patients and 25.1% of control patients had received a bivalent dose. Among patients aged ≥18 years with immunocompromising conditions, VE against COVID-19–associated hospitalization was 28% during the first 7–59 days after receipt of the bivalent dose and declined to 13% by 120–179 days. VE for those who received monovalent doses only was 3% (median 355 days after the last dose). Estimates of relative and absolute VE were similar (Supplementary Table, https://stacks.cdc.gov/view/cdc/128421).

*Sites from the CDC-funded VISION Network that contributed data for this analysis were HealthPartners (Minnesota and Wisconsin), Intermountain Healthcare (Utah), Kaiser Permanente Northern California (California), Kaiser Permanente Center for Health Research (Oregon and Washington), and Regenstrief Institute (Indiana).
Medical events with a discharge code consistent with COVID-19–like illness were included. COVID-19–like illness diagnoses were obtained from ICD-10 discharge codes. The specific codes used were COVID-19 pneumonia: J12.81 and J12.82; influenza pneumonia: J09.X1, J10.0, J10.00, J10.01, J10.08, J11.0, J11.00, and J11.08; other viral pneumonia: J12*; bacterial and other pneumonia: J13, J14, J15*, J16*, J17, and J18*; influenza disease: J09*, J10.1, J10.2, J10.8*, J11.1, J11.2, and J11.8*; acute respiratory distress syndrome: J80; chronic obstructive pulmonary disease with acute exacerbation: J44.1; asthma acute exacerbation: J45.21, J45.22, J45.31, J45.32, J45.41, J45.42, J45.51, J45.52, J45.901, and J45.902; respiratory failure: J96.0*, J96.2*, and R09.2; other acute lower respiratory tract infections: J20*, J21*, J22, J40, J44.0, J41*, J42, J43*, J47*, J85, J85.0, J85.1, J85.2, J85.3, and J86*; acute and chronic sinusitis: J01* and J32*; acute upper respiratory tract infections: J00*, J02*, J03*, J04*, J05*, and J06*; acute respiratory illness signs and symptoms: R04.2, R05, R05.1, R05.2, R05.4, R05.8, R05.9, R06.00, R06.02, R06.03, R06.1, R06.2, R06.8, R06.81, R06.82, R06.89, R07.1, R09.0*, R09.1, R09.2, R09.3, and R09.8*; acute febrile illness signs and symptoms: R50*, R50.81, and R68.83; acute nonrespiratory illness signs and symptoms: R19.7, R43*, R51*, R51.9, M79.1*, M79.10, M79.18, R65*, R53.81, R53.83, R57.9, R41.82, R40*, R53.1, R11.0, R11.10, R11.11, R11.15, R11.2, R21*, R10.0, R10.1*, R10.2, R10.3*, R10.8, R10.81*, R10.84, and R10.9. All ICD-10 codes with * include all child codes under the specific parent code.
§Immunocompromising conditions were obtained from ICD-10 discharge codes. The specific codes used were Hematological Malignancy: C81.*, C82.*, C83.*, C84.*, C85.*, C86.*, C88.*, C90.*, C91.*, C92.*, C93.*, C94.*, C95.*, C96.*, D46.*, D61.0*, D61.2, D61.9, D70.0, and D71.*; Solid Malignancy: C00.*, C01.*, C02.*, C03.*, C04.*, C05.*, C06.*, C07.*, C08.*, C09.*, C10.*, C11.*, C12.*, C13.*, C14.*, C15.*, C16.*, C17.*, C18.*, C19.*, C20.*, C21.*, C22.*, C23.*, C24.*, C25.*, C26.*, C27.*, C28.*, C29.*, C30.*, C31.*, C32.*, C33.*, C34.*, C35.*, C36.*, C37.*, C38.*, C39.*, C40.*, C41.*, C42.*, C43.*, C44.*, C45.*, C46.*, C47.*, C48.*, C49.*, C50.*, C51.*, C52.*, C53.*, C54.*, C55.*, C56.*, C57.*, C58.*, C59.*, C60.*, C61.*, C62.*, C63.*, C64.*, C65.*, C66.*, C67.*, C68.*, C69.*, C70.*, C71.*, C72.*, C73.*, C74.*, C75.*, C76.*, C77.*, C78.*, C79.*, C7A.*, C7B.*, C80.*, D3A.*, Z51.0, Z51.1*, and C4A.*; Transplant: T86.0, T86.1, T86.2, T86.3, T86.4, T86.5, T86.81, T86.85, D47.Z1, Z48.2.*, Z94.*, and Z98.85; rheumatologic/inflammatory disorders: D86.*, E85, E85.1, E85.2, E85.3, E85.4, E85.8*, E85.9, G35.*, J67.9.*, L40.54, L40.59, L93.0.*, L93.2.*, L94.*, M05.*, M06.*, M07.*, M08.*, M30.*, M31.3*, M31.5*, M32.*, M33.*, M34.*, M35.3*, M35.8*, M35.9*, M46.*, and T78.40*; Other intrinsic immune condition of immunodeficiency: D27.9, D72.89, D80.*, D81, D81.0, D81.1, D81.2, D81.4, D81.5, D81.6, D81.7, D81.8*, D81.9, D82.*, D83.*, D84.*, D87.89, D89, D89.0, D89.1, D89.3, D89.4*, D89.8*, D89.9, K70.3*, K70.4*, K72.*, K74.3, K74.4, K74.5, K74.6, N04.*, R18.0; HIV: B20.*, B21.*, B22.*, B23.*, B24.*, B97.35, O98.7*, and Z21*. All ICD-10 codes with * include all child codes under the specific parent code.
The index date for each hospitalization was defined as either the date of collection of a respiratory specimen associated with the most recent positive or negative SARS-CoV-2 test result before the hospital admission or the admission date (if testing occurred only after the admission).
**On April 19, 2023, CDC authorized an additional bivalent vaccine dose for adults aged ≥65 years and additional doses for persons who are immunocompromised. https://www.cdc.gov/media/releases/2023/s0419-covid-vaccines.html
††Death was identified at each individual site and was defined as a death while hospitalized or ≤28 days after hospital admission.
§§For VE against critical illness, case-patients were persons admitted to an ICU or who experienced in-hospital death associated with COVID-19, and control patients were persons hospitalized without COVID-19.
¶¶45 C.F.R. part 46.102(l)(2), 21 C.F.R. part 56; 42 U.S.C. Sect. 241(d); 5 U.S.C. Sect. 552a; 44 U.S.C. Sect. 3501 et seq.

processing....